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Abstract

In this paper we present a robust method for automat-
ically matching features in images corresponding to the
same physical point on an object seen from two arbi-
trary viewpoints. Unlike conventional stereo matching ap-
proaches we assume no prior knowledge about the relative
camera positions and orientations. In fact in our appli-
cation this is the information we wish to determine from
the image feature matches. Features are detected in two or
more images and characterised using affine texture invari-
ants. The problem of window effects is explicitly addressed
by our method - our feature characterisation is invariant to
linear transformations of the image data including rotation,
stretch and skew. The feature matching process is optimised
for a structure-from-motion application where we wish to
ignore unreliable matches at the expense of reducing the
number of feature matches.

1. Introduction

The problem being addressed is, given two arbitrary im-
ages of a scene or object, can we find a reliable set of fea-
ture matches. In our application we wish to use the feature
matches to recover camera motion parameters (or camera
intrinsics) using standard “Structure-From-Motion” tech-
niques (see for example Beardsley et al [1]).

1.1. Current approaches to stereo corre-
spondence

The stereo matching problem can be broken down into
several categories:

Calibrated short baseline stereo: Two cameras can be
placed in a known configuration such that the cameras are

close together relative to the viewed scene (a “short” base-
line). The conventional convergent stereo configuration
makes the correspondence problem much easier because for
any given point in the left image, the corresponding point in
the right image lies on a known epipolar line. The drawback
of this approach is obviously that the camera configuration
is heavily constrained. There is a large body of literature on
this subject (e.g. Falkenhagen [3], Faugeras [4]).

Uncalibrated short baseline stereo: A single camera can
be moved in such a way that the displacement of the camera
and change in camera orientation between images is small
but unknown. For example a sequence taken with a video
camera can be used. In such a case points in a given im-
age frame appear to be displaced by a small amount in the
next frame. This makes the correspondence problem easier
because for any given point in a given image, the corre-
sponding point in the next image in the sequence is known
to lie within some small neighbourhood of the original loca-
tion. The drawback of this approach is that again the camera
configuration (or in the case of a video camera, the cam-
era motion) is heavily constrained. There has been much
work with short baseline images (e.g. Deriche [2], Xu [20])
as well as tracking features through video sequences (e.g.
Tomasi and Shi [19]).

Uncalibrated wide baseline stereo: This is the problem
that we are trying to address. The distance between cameras
relative to the viewed scene is significant (a “wide” base-
line). The epipolar geometry of the scene is unknown and
the ultimate aim is to determine this using point correspon-
dences. The camera(s) may also be cyclo-rotated signifi-
cantly between images. Conventional techniques that use
intensity cross-correlation as an affinity measure for poten-
tial matches will fail in these situations. Robust statistical
methods such as RANSAC [5] can be used to tolerate a sig-
nificant fraction of mismatched features. However there is
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an associated computational cost that grows with the num-
ber of mismatched features. This approach alone will fail
for large changes in camera parameters or large camera mo-
tions.

1.2. Current approaches to wide baseline
stereo

Pritchett and Zisserman [15] describe their approach
which is to generate sets of local planar homographies and
to use these for two purposes. Firstly, to provide a better
affinity measure between potentially matching features and
secondly, to restrict the search for potential feature matches.
The main drawback of their approach is that the generation
of possible homographies relies on suitable structures (par-
allelograms and large planar regions) being present in the
scene.

Gouet et al describe an approach based on image in-
variants [7]. Features are detected in colour images and
characterised using first order differential rotation invari-
ants. Matching is performed using a relaxation technique
which uses semi-local constraints. The relaxation technique
approach is computationally quite expensive.

There has also been some relevant work in the general
area of image matching and indexing. Schmid and Mohr
describe an approach to indexing greyscale intensity im-
ages using differential rotation invariants calculated at mul-
tiple scales [18]. A voting scheme is used to accumulate the
number of features in a query image that match features in
each image in a database. The system has not been demon-
strated with wide viewpoint variation.

More recently, Lowe [13] describes a Scale Invariant
Feature Transform (SIFT) approach where scale-space fea-
tures are detected and characterised in a manner invariant
to location, scale and orientation. Some robustness to small
shifts in local geometry is achieved by representing the lo-
cal image region with multiple images representing each of
a number of orientation planes. This results in an unneces-
sarily high dimensional SIFT key vector which is not truly
invariant to affine distortions.

A general approach to matching uncalibrated images is
described by Deriche [2]. This paper is really concerned
with the short baseline problem although the relaxation
matching scheme described is also applicable to the wider
problem. Correlation is used over a significantly sized
search window to match features in two images. For wide
baseline stereo this will fail because raw image correlation
will be sensitive to the affine (and more generally projec-
tive) distortions of the image which can occur.

Our approach significantly extends the rotation invari-
ants method described by Gouet to cope with local affine
image transformations. Under an unconstrained change of
viewpoint a small planar surface patch will undergo a (near)

affine transformation in the images. Hence it is important to
be able to cope with this class of image transformations.

Affine invariants have been used for recognition pur-
poses (e.g. moment invariants are used by Kadyrov [10],
Flusser and Suk [6] and photometric affine invariants by
Van Gool [14]). The main problem with these meth-
ods is that they either require binary images or segmented
bounded regions. These are difficult to obtain robustly for
general images. Sato and Cipolla consider the statistics
of image texture features over the whole image to recover
affine transformations [16]. Again this method ignores win-
dow effects which will be discussed in more detail later on.

Finally it is worth mentioning another approach to
matching features with affine distortion described by Gruen
[8]. The ALSC (Adaptive Least Squares Correlation) tech-
nique attempts to match image regions by explicitly recov-
ering the affine transformation between the two. The trans-
formation may be different for every pair of features and
thus the alogorithm needs to be run on every candidate pair.
Hence this approach becomes prohibitively costly as the
number of potential feature matches increases.

2. Outline of our approach

There are 3 basic steps to our system:

1. Detect scale-space features – This step extracts a set of
“interest points” in each image, each with an associ-
ated scale. We use a multi-scale Harris feature detector
(see section 3).

2. Calculate affine invariants – Each interest point is char-
acterised by examining a region in the image centred
around that point. We explicitly consider the problem
of determining an appropriate window that allows the
robust calculation of a set of “characterisation” values
that are robust to local linear transformations of the
image data (i.e. 2D rotations, stretching and skew).
Typically 20-40 invariants are required to adequately
characterise an interest point (see section 4).

3. Matching – By comparing two vectors of invariants the
similarity between two interest points from different
images can be efficiently determined. The matching
step uses this information to determine a set of corre-
sponding points from the interest points in two images.
The mechanism aims to find a reliable set of matches
so that the number of incorrect matches is small com-
pared to the total (see section 5).

Once correspondences are found between a single pair
of images the epipolar constraint can be employed to re-
move a small number of incorrect matches (outliers) in the
conventional manner.
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By matching across successive pairs of images, the cam-
eras and scene geometry can be determined using a conven-
tional “Structure From Motion” approach.

3. Feature Detection

Any suitable scale-space feature detector could be used
in this step. Given two images of a scene we would like
to allow for changes in scale due to camera translation or
zoom. Ideally scale-space features should be used such that
there is a good chance of a feature being detected in both the
“zoomed-out” image and the “close-up” image. The scales
associated with these features should reflect their differing
apparent size in the images.

We have found that in practice true scale-space features
such as scale-space maxima of a “cornerness” measure (see
Lindeberg [11]) are not reliably detectable. In particular
the scale associated with a corner feature is often unreliable
because the feature is present over a range of scales (with
no one single dominant scale). Hence we have found that
a better approach is to detect spatial Harris features [9] at
a set of scales and order these features based on a scale-
normalised feature strength as follows.

For each image a fixed number of interest points are cal-
culated. We compute the 2nd moment matrix M (at some
scale �), at every point in the image using :-

M = exp�xTx=2�2 
 ((rI)(rI)T ) (1)

whererI is the gradient operator on the intensity image
I calculated at some scale t and 
 is the image convolution
operator over x 2 <2. A Harris corner strength measure is
calculated from the determinant and the trace of this matrix
as follows:

strength = detM � 0:04 � (trace(M))2

Corners are placed at local maxima of the corner strength
measure. The corner strength measure can then be used to
order the corners in order of significance.

Lindeberg points out that there are two scales that can be
varied in the calculation of M – the integration scale, � and
the “local scale” at which derivatives are calculated, t. The
approach taken here is to fix the local scale t proportional
to the integration scale �. In our system the Harris detec-
tor is run at multiple integration scales using a geometric
progression of fixed scale settings.

We use the determinant and trace of the scale normalised
2nd moment matrix (as defined by Lindeberg [11]) to cal-
culate a scale normalised corner strength measure. This
means that corner strengths can be compared across differ-
ent scales and the top ‘n’ corners over all detected scales
can be determined.

4. Calculating affine invariants

The motivation for choosing this class of transforma-
tions is that a small planar surface patch when viewed
from a varying viewpoint undergoes an affine distortion.
Smooth surfaces can locally be approximated by planar sur-
face patches. Hence the approach is valid for the majority
of everyday scenes which contain some smooth surface re-
gions.

We intend to match scale-space features – features with
a spatial 2D image location and an associated scale. If we
hypothesise a match between two such features in two im-
ages then assuming an affine model there are 3 unknown
transformation parameters for the local image distortion:

� stretch, skew – can be parameterised by two parame-
ters (a direction angle and a stretch factor).

� rotation – can be parameterised by an angle

This information is illustrated graphically in figure 1.
The translation (2 parameters) is determined by the spatial
position of the features and the scale change (1 parameter)
is determined by the relative scale of the features.

(x1,y1,s1)
(x2,y2,s2)

Image 1 Image 2

Translation

Skew

Scale

Rotation

(x,y)

(angle. stretch)

(angle)

(scale factor)

(x2-x1, y2-y1)

s2/s1

unknown

unknown

Transformation determined ?

Figure 1. Hypothesised correspondence

4.1. Overview

The calculation of invariants can be broken down into
three stages:
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1. remove stretch and skew effects

2. normalise for photometric intensity changes

3. remove rotation effects

Previous approaches to calculating affine invariants ig-
nore the issue of choosing a suitable window function. If
we ignore this problem and used a circular Gaussian win-
dow function to calculate differential affine invariants then
the resulting characterisation will not in fact be invariant to
affine transformations.

For example, suppose a circular window centered around
a given interest point is always used when calculating in-
variants. After an affine transformation the image structure
in the circle is mapped to an elliptical region. If we place
a circle around the transformed image feature that contains
this elliptical region there will be additional image struc-
tures in the region that will distort any invariant measures
calculated. Hence the window function needs to be adapted
for each image feature.

4.2. Choosing a window function and re-
moving stretch and sk ew

We propose a novel method for determining a stretch
and skew normalised image patch for further processing.
The key point is to adapt the shape of a window function
based on local image data. The algorithm extends the idea
of shape-adapted texture descriptors as described by Linde-
berg [12]. Lindeberg extends the notion of scale space to
“affine Gaussian scale-space”. Consider the 2nd moment
matrix defined by equation (1). In this equation a rotation-
ally symmetric Gaussian window function is used to calcu-
late the moment descriptor.

More generally using “affine Gaussian scale-space” el-
liptical window functions can be used with associated co-
variance matrices (or “shape matrices”). Using Lindeberg’s
notation we define the following second moment descriptor,
�L by

�L(:; �t;�s) = g(:; �s)
 ((rL)(:; �t)(rL)(; ; �t)
T )

where L(:; �) is the affine Gaussian scale-space represen-
tation for an intensity image I(:), �t is a covariance matrix
corresponding to the local scale and �s is a covariance ma-
trix corresponding to the integration scale.

Given a covariance matrix�, the associated non-uniform
Gaussian kernel used to generate L(:; �) is given by

g(x; �) =
1

2�
p
det �

exp(�xT��1x=2)

Hence whereas conventional scale space is generated
by convolution with a rotationally symmetric Gaussian,

affine scale-space is generated by a linearly transformed
(stretched, skewed etc) elliptical gaussian kernel.

Lindeberg describes an iterative procedure for adapting
the shape matrices such that the following “fixed point”
property holds for some matrix ML.

�L(qL; �t;L;�s;L) = ML

�t;L = tM�1
L

�s;L = sM�1
L

Lindeberg shows that if moment image descriptors are
calculated under these conditions then the image descrip-
tors will be relative invariant under arbitrary affine transfor-
mations (see [12] for details).

We observe that the shape adaptation scheme of Linde-
berg can be used to determine a stretch-skew normalised
image patch as follows. Consider a 2D image IR(x) and a
linearly transformed image IL(x) = IR(Bx). Suppose the
shape adapted second moment matrices are calculated for
both images at qL and qR = BqL respectively. For both
images we can transform the image data to a normalised
frame using the square root of the second moment matrix.
We define the transformed image by

IL0(M
�

1

2

L x) = IL(x)

where M
�

1

2

L is the square root matrix of ML and similarly
for IR0 . Note this square root matrix is well defined (up to a
rotation) since the second moment matrix is symmetric pos-
itive definite. We use Cholesky decomposition to calculate
this matrix.

Lindeberg derives the following transformation property
for affine scale-space second moment matrices. Under a
linear transformation of image coordinates B

�L (q; �t;�s) = BT�R
�
Bq;B�tB

T ; B�sB
T
�
B

Using this transformation property we can show that in
our normalised frame:

�L0(q0; tI; sI) = I

where I is the 2� 2 identity matrix.
Hence in this transformed domain the second moment

matrix calculated using circular symmetric smoothing ker-
nels is the identity for both images. Given we have linearly
transformed copies of one image, there exists a linear trans-
formationB0 from I 0L to I 0R and applying the transformation
properties of the second moment matrix again we can show
that

I = �L0 = B0T�R0B0 = B0TB0

and hence B0 is a rotation. The situation is illustrated in
figure 2.
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�L(qL; �t;L;�s;L)
= ML

x 7! Bx MR

x 7!M
�

1

2

L x x 7!M
�

1

2

R x

�0L(q
0

L; It; Is)
= I

x0 7! B0x0 �0R = I

Figure 2. Diagram illustrating transformation
of second moment matrices

We have shown that by calculating a shape adapted mo-
ment descriptor at a 2D interest point and transforming us-
ing the square root matrix of this descriptor we can obtain a
normalised image patch. We have shown that any two such
normalised patches originating from an image and a linearly
distorted copy are related by a rotation.

In practice for this part of the algorithm, we use a simpli-
fied version of Lindeberg’s shape adaptation scheme. The
integration scale s is fixed proportional to the local scale t
and this is set proportional to the detection scale of the inter-
est point. For convenience, our iterative adaptation scheme
works in the transformed image domain. We calculate the
second moment matrix using the conventional rotationally
symmetric smoothing kernels. We then transform the local
image structure using the square root of this second moment
matrix but scaled to have unit determinant. This process is
repeated until convergence (i.e. until the second moment
matrix is sufficiently close to the identity). Our adaptation
scheme assumes the scale associated with our scale-space
features is reasonably consistent across images and further
scale adaptation is unnecessary. An obvious future step
would be to implement the full scale adaptation approach
of Lindeberg.

It is also worth noting that a simple linear rescaling of
intensity values will rescale each element in the second mo-
ment matrix. Hence in order to be reasonably robust to
lighting changes we have fixed the determinant of the sec-
ond moment matrix to be 1 when determining the “skew-
stretch normalisation” transformation.

4.3. Normalising for lighting changes

Once the image patch has been normalised for stretch
and skew we use a conventional intensity (or colour) nor-
malisation algorithm such as that described by Gouet et al
[7].

4.4. Removing rotation

In order to obtain an affine invariant characterisation of
the local image structure, all that remains is to remove the
effects of rotation. We could use any conventional set of
rotation invariants to generate our characterisation data. In
practice we use a variant of the Fourier-Mellin transforma-
tion [17]. Explicitly, we calculate a set of complex-valued
coefficients uXn;m for each colour component X (i.e. red,
green, blue or intensity) defined by:

uXn;m =

Z
dn

drn
G�(r) exp(im�)JX (r; �)r dr d�

where JX(r; �) = IX(r cos�+x0; r sin�+ y0) is the rel-
evant colour component of the image patch, fr; �g are polar
coordinates defined about (x0; y0) the centre of the image
patch (i.e. the location of the interest point) and G�(r) is
a 1D Gaussian window function with standard deviation �
set proportional to the size of the image patch. The integral
can be efficiently approximated as a weighted sum of pixel
values. The weights can be precomputed from the defining
integral above.

Under a rotation of the image J 0(r; �) = J(r; � + �)
these complex coefficients transform as follows:

u0n;m = exp(im�)un;m (2)

Hence to calculate rotation invariants, we normalise all
the coefficients uXn;k by dividing by a unit-length complex
number proportional to uX0;k. Note that for colour images
the same normalisation coefficient may be used across all
the colour components.

We calculate around 13 invariants for greyscale images
and 43 invariants for RGB colour images.

5. Matching

The above features are sufficiently well characterised to
use a very simple one-shot matching scheme. Each feature
is represented by a set of affine invariants which are com-
bined into a feature vector. A Mahalanobis distance metric
is used to measure similarity between any two feature vec-
tors.

Hence for two images we have a set of feature vectors
v(i) andw(j) and a distance measure d(v; w). The matching
scheme proceeds as follows:
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� Calculate distance matrix mi;j between pairs of fea-
tures across the 2 images.

mi;j = d(v(i); w(j))

� Identify potential matches (i; j) such that feature i is
the closest feature in the first image to feature j in the
second image and vica versa.

� Score matches using an ambiguity measure.

� Select unambiguous matches (or best “n” matches).

We use an ambiguity measure similar to that used by De-
riche [2]. The ambiguity score measures the relative dis-
tance between the two matching features and the next clos-
est distance between one of the matched pair and any other
feature.

We have found that for Structure-From-Motion algo-
rithms the strength of a feature match is less important than
the ambiguity of the match. Furthermore, we have realised
that the ambiguity measure is the only information required
for deciding whether to accept a possible match.

Note that at this stage we do not require any high level
prior information. The reliability of the outlined scheme al-
lows the matching and camera solving (fundamental matrix
calculation) steps to be decoupled avoiding computationally
expensive relaxation schemes.

6. Experimental results

6.1. Adapted windows for synthetic data

Figure 3 shows the adapted windows obtained around 4
corner features for a synthetic image of a square and the
features at the same scale for an affine distorted copy of the
image.

Figure 3. Shape of window functions around
corner features

Figure 4 shows one of the features from each image
mapped into the skew-normalised frame. It can be seen that
these image patches are related by a rotation.

Figure 4. Resampled image patches in skew-
normalised frame

6.2. Real intensity images

In this example two small images (approx 200 by 300
pixels) of a box viewed from different viewpoints were
used. The images were obtained with a static camera and
by rotating the object about 15 degrees. Hence the the light
incident on each surface across the images varies (variable
illumination).

The system takes about 1-2 minutes to process the pair
of images on a standard 400Mhz Pentium PC. (The majority
of processing time is spent in detection of interest points).
Around 10 affine intensity invariants were used to charac-
terise each feature and the strongest 200 features were de-
tected in both images.

Figure 5. Example output with greyscale im-
ages

The correspondences found are indicated by the white
lines joining the corresponding points in each image (fig-
ure 5). There were 24 correspondences found and there is
only one mismatch. The epipolar constraint could be used
to remove this outlier.
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6.3. Real colour images

A sequence of full sized (768 by 576) colour images of
a dinosoar toy were taken. The angular separation between
images (i.e. the angle between camera1 - object - camera2)
was typically 10 to 15 degrees. The algorithm takes about 2
minutes to process each frame on a Pentium PC (400 MHz).
Around 40 colour affine invariants were used to characterise
each feature and the strongest 200 features were detected in
each image.

Figure 6. Matches obtained with images 4 and
5 for colour toy

Typically over 50 matches are obtained between succes-
sive image frames with few incorrect matches. A typical
image pair is shown (figure 6) - 22 correspondences were
found with no incorrect matches. For the purposes of vi-
sualisation the matches have been thinned (i.e. matches re-
moved which are too close to neighbouring matches).

6.4. Matching across v ariable turn angle

A sequence of colour images of a toy house were taken.
Five of the images are shown in figure 7 (labelled image 0,
1, 2, 3 and 4).

The matching algorithm was ran independently on pairs
of images containing image 0 (i.e. (0,1), (0,2), (0,3), (0,4)).
The turn angle between the cameras was also determined
(using user-verified feature matches). For each image pair
the following data was obtained:

� Number of potential matches - This is the total number
of matches as defined in section 5 including matches
with poor ambiguity scores.

� First incorrect match - The matches are ordered by am-
biguity score into a list. This is the rank of the first
incorrect match in the list.

image 0 image 1 image 2

image 3 image 4

Figure 7. Image sequence of a toy house

� Number of correct matches in top 20 - This is the num-
ber of verified matches in the list of 20 least ambiguous
matches.

The results are summarised in figure 8.

0

10

20

30

40

50

60

70

80

15 20 25 30 35 40 45 50 55 60 65
turn angle (degrees)

Results of matching across variable turn angles

no. winning matches
first incorrect match
no. correct in top 20

Figure 8. Graph showing performance of
matcher for variable turn angle

The method appears to only break down for the final im-
age pair where the turn angle is around 65 degrees. Figure
9 shows the best 20 matches between image 0 and image
3 (a turn angle of 51 degrees). Note the two mismatches
where the corners of the window in image 0 are matched to
the wrong window in image 3. However the first of these
mismatches only occurs at position 15 in the ranked list of
matches.
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Figure 9. Best 20 matches between image 0
and 3

7. Summary and Conclusions

In this paper we describe a novel method for matching
image features that is robust to local affine distortions. We
have shown how an adaptive window function can be ob-
tained that allows true affine-invariant descriptors of local
image structure to be efficiently calculated. This characteri-
sation is sufficiently descriptive to allow unconstrained im-
age feature matching to be performed at low computational
cost. The resulting feature matches can be used as reliable
input to camera parameter computations (for example for
3D reconstruction problems).

We have also shown how reliable matches can be se-
lected based on an ambiguity measure. This reduces the
number of false matches obtained at the expense of total
number of matches.

Future work will look at improving the computational ef-
ficiency of this approach and extending the shape adaptation
to incorporate true scale adaptation.
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